A-Level数学是热门考试科目之一,涉及到很多细碎的知识点,今天,锦秋小编将重点为大家介绍一下ALevel数学考试中不等式的基本性质知识点。
1.不等式的定义:a-b>0a>b, a-b=0a=b, a-b<0a
① 其实质是运用实数运算来定义两个实数的大小关系。它是本章的基础,也是证明不等式与解不等式的主要依据。
②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。
作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。
2.不等式的性质:
① 不等式的性质可分为不等式基本性质和不等式运算性质两部分。
不等式基本性质有:
(1) a>bb
(2) a>b, b>ca>c (传递性)
(3) a>ba+c>b+c (c∈R)
(4) c>0时,a>bac>bc
运算性质有:
(1) a>b, c>da+c>b+d。
(2) a>b>0, c>d>0ac>bd。
(3) a>b>0an>bn (n∈N, n>1)。
(4) a>b>0>(n∈N, n>1)。
应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。
② 关于不等式的性质的考察,主要有以下三类问题:
(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。
(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。
(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。
更多A-Level科目及考试等方面的信息,大家也可以扫码关注锦秋A-Level进行了解,锦秋A-Level紧抓中国学生理科优势,进行课程组合优化。开设数学、物理、化学、生物、经济学、会计学等课程,帮助学生以优异成绩申请更好的大学。
大学名称 | QS排名 |
---|